ASSIST‐U: A system for segmentation and image style transfer for ureteroscopy

Author:

Lu Daiwei1ORCID,Wu Yifan1,Acar Ayberk1ORCID,Yao Xing1,Wu Jie Ying1,Kavoussi Nicholas2,Oguz Ipek1

Affiliation:

1. Department of Computer Science Vanderbilt University Nashville Tennessee USA

2. Department of Urology Vanderbilt University Medical Center Nashville Tennessee USA

Abstract

AbstractKidney stones require surgical removal when they grow too large to be broken up externally or to pass on their own. Upper tract urothelial carcinoma is also sometimes treated endoscopically in a similar procedure. These surgeries are difficult, particularly for trainees who often miss tumours, stones or stone fragments, requiring re‐operation. Furthermore, there are no patient‐specific simulators to facilitate training or standardized visualization tools for ureteroscopy despite its high prevalence. Here a system ASSIST‐U is proposed to create realistic ureteroscopy images and videos solely using preoperative computerized tomography (CT) images to address these unmet needs. A 3D UNet model is trained to automatically segment CT images and construct 3D surfaces. These surfaces are then skeletonized for rendering. Finally, a style transfer model is trained using contrastive unpaired translation (CUT) to synthesize realistic ureteroscopy images. Cross validation on the CT segmentation model achieved a Dice score of 0.853 ± 0.084. CUT style transfer produced visually plausible images; the kernel inception distance to real ureteroscopy images was reduced from 0.198 (rendered) to 0.089 (synthesized). The entire pipeline from CT to synthesized ureteroscopy is also qualitatively demonstrated. The proposed ASSIST‐U system shows promise for aiding surgeons in the visualization of kidney ureteroscopy.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Institution of Engineering and Technology (IET)

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3