Behaviour analysis of H‐bridge high‐voltage capacitor banks fault on 230‐kV substation using discrete wavelet transform

Author:

Chiradeja Pathomthat1,Lertwanitrot Praikanok2,Ngaopitakkul Atthapol3ORCID,Pothisarn Chaichan3

Affiliation:

1. Faculty of Engineering Srinakharinwirot University Bangkok Thailand

2. Electricity Generating Authority of Thailand Nonthaburi Thailand

3. School of Engineering King Mongkut's Institute of Technology Ladkrabang Bangkok Thailand

Abstract

AbstractThe protection of traditional high‐voltage capacitor banks relies on an unbalance relay which operates when an internal fuse is blown. However, the unbalance relay cannot indicate the cause of the fault. Thus, an operator wastes time and human resources investigating the fault issues. In this paper, a fault which occurred in a 230‐kV power system of Electricity Generating Authority of Thailand was observed by performing simulations using the Power Systems Computer Aided Design (PSCAD) program. The study system based on the double bus station and 72 MVAR capacitor banks was installed in the form of a back‐to‐back topology. Three scenarios were considered: normal condition, fault occurrence in one capacitor bank and fault occurrence in both capacitor banks. Current characteristics such as the current phase and difference in unbalance current were considered. In addition, discrete wavelet transform was applied to solve the ambiguity of current generated from the PSCAD. The authors’ results suggest that identifying fault events using a coefficient of wavelet is more efficient than relying on the current amplitude. The findings mentioned in this paper can be applied in a traditional power system protection scheme to enhance a system's reliability.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3