Passing‐yielding intention estimation during lane change conflict: A semantic‐based Bayesian inference method

Author:

Cui Mingyang1ORCID,Liu Jinxin1,Zheng Haotian1,Xu Qing1,Wang Jiangqiang1,Geng Lu2,Sekiguchi Takaaki2

Affiliation:

1. School of Vehicle and Mobility Tsinghua University Beijing China

2. Hitachi China Research Laboratory Beijing China

Abstract

AbstractIntention estimation has been widely studied in lane change scenarios, which explains a vehicle's behaviour and implies its future motion. However, in dense traffic, lane‐changing is more tactical and interactive. Due to the conflict between merging vehicles and adjacent vehicles, driving intentions become interdependent which fuses passing and yielding. In addition, lane change occurs without a fixed location. Drivers should be aware of each other's intentions along conflict process, and take instant responses. To address these challenges, this paper proposes semantic‐based interactive intention estimation (SIIE), to understand driving intentions during lane change conflict. The problem is addressed by combining driving semantics with probability inference model based on dynamic Bayesian network (DBN). Firstly, the DBN is modelled for the interaction process with Condition‐Intention‐Behaviour relationships. Secondly, the semantics are extracted from the lane change conflict and are inferred with observation methods. Thirdly, SIIE is trained and verified with real‐world driving data. The intention estimation results are demonstrated, and then utilized for multi‐modal motion identification and trajectory prediction. Lane change in dense traffic requires interactive cognition of driving intentions, the findings of this research shall inspire future studies into related scenarios, and promote interactive driving technologies.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3