ADF‐Net: Attention‐guided deep feature decomposition network for infrared and visible image fusion

Author:

Shen Sen1ORCID,Zhang Taotao1,Dong Haidi1,Yuan ShengZhi1,Li Min1,Xiao RenKai1,Zhang Xiaohui1

Affiliation:

1. School of Weapon Engineering Naval Engineering University Wuhan China

Abstract

AbstractTo effectively enhance the ability to acquire information by making full use of the complementary features of infrared and visible images, the widely used image fusion algorithm is faced with challenges such as information loss and image blurring. In response to this issue, the authors propose a dual‐branch deep hierarchical fusion network (ADF‐Net) guided by an attention mechanism. Initially, the attention convolution module extracts the shallow features of the image. Subsequently, a dual‐branch deep decomposition feature extractor is introduced, where in the transformer encoder block (TEB) employs remote attention to process low‐frequency global features, while the CNN encoder block (CEB) extracts high‐frequency local information. Ultimately, the global fusion layer based on TEB and the local fusion layer based on CEB produce the fused image through the encoder. Multiple experiments demonstrate that ADF‐Net excels in various aspects by utilizing two‐stage training and an appropriate loss function for training and testing.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3