Multi‐stage image inpainting using improved partial convolutions

Author:

Li Cheng1ORCID,Xu Dan1,Zhang Hao1ORCID

Affiliation:

1. School of Information Science and Engineering Yunnan University Kunming China

Abstract

AbstractIn recent years, deep learning models have dramatically influenced image inpainting. However, many existing studies still suffer from over‐smoothed or blurred textures when missing regions are large or contain rich visual details. To restore textures at a fine‐grained level, a multi‐stage inpainting approach is proposed, which applies a series of partial inpainting modules as well as a progressive inpainting module to inpaint missing areas from their boundaries to the centre successively. Some improvements are made on the partial convolutions to reduce artifacts like blurriness, which require a convolution kernel to contain known pixels more than a certain proportion. Towards photorealistic inpainting results, the intermediate outputs from each stage are used to compute the loss. Finally, to facilitate the training process, a multi‐step training is designed that progressively adds inpainting modules to optimize the model. Experiments show that this method outperforms the current excellent techniques on the publicly available datasets: CelebA, Places2 and Paris StreetView.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3