Breakthrough design of power handling capability‐enhanced slotted oversized substrate‐integrated waveguide power divider/combiner considering corona and thermal effects

Author:

Souri Masoumeh1,Masoumi Nasser2ORCID,Mohammad‐Taheri Mahmoud3ORCID

Affiliation:

1. School of ECE CST‐LAB College of Eng. University of Tehran Tehran Iran

2. Department of Electronics School of ECE College of Eng. University of Tehran Tehran Iran

3. Department of Communication School of ECE College of Eng. University of Tehran Tehran Iran

Abstract

AbstractAn analysis and design of a new slotted power divider/combiner (PDC) that utilises an oversized substrate‐integrated waveguide (OS‐SIW) is presented to enhance power handling capability (PHC). It is interesting to note that, the power capability tolerance can be increased by increasing the width of structure and thickness of the substrate, although it may introduce higher‐order modes. The paper is focused on improving PHC of PDC that propagates only the TE10 mode while preventing the propagation of higher‐order modes. Additionally, the PHC of the proposed structure is studied in detail. The air breakdown or the corona effect is a physical phenomenon that limits the Peak Power Handling Capability (PPHC) of a device. In slotted microwave components, the corona effect plays a crucial role in determining the PPHC, and it is closely related to environmental conditions such as pressure. Another limiting factor is self‐heating, which affects the device's Average Power Handling Capability (APHC). The slotted OS‐SIW PDC is designed on Rogers RO4003 laminate with 32mil thickness, offering a low profile with an overall OS‐SIW PDC area of 170 × 55 mm2. The measured results of the fabricated PDC showcase a range of desirable features. Moreover, the proposed structure in power divider mode exhibits significant improvements in APHC compared to those of the conventional Substrate‐Integrated Waveguides structures, with respective enhancements of approximately 8.26% at 10 GHz (with a Fractional Band Width of 58.3%). These advantages are highly beneficial and hold great potential.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3