Stochastic multi‐stage joint expansion planning of transmission system and energy hubs in the presence of correlated uncertainties

Author:

Allahvirdizadeh Yousef1,Galvani Sadjad2ORCID,Shayanfar Heidarali1ORCID

Affiliation:

1. Center of Excellence for Power Systems Automation and Operation School of Electrical Engineering Iran University of Science and Technology Tehran Iran

2. Faculty of Electrical and Computer Engineering Urmia University Urmia Iran

Abstract

AbstractDeployment of Energy Hubs (EHs) across the power grid can alleviate the Transmission System (TS) capacity and substitute the conventional fossil fuel‐based thermal units. Therefore, this paper presents a tri‐level multi‐stage Joint Expansion Planning of the Transmission system and EHs (JEPT&EHs). In this approach, the Cholesky decomposition technique combined with the Nataf transformation is applied to make the uncertain input parameters correlated. Then, the k‐means data‐clustering method is employed to reduce the initial correlated samples. In the first level, the Transmission System Operator (TSO) optimizes the planning and scheduling strategies associated with the TS capacity requirements and operation costs of the conventional generators. In the second level, the financers specify the expansion of the EHs based on the Locational Marginal Prices (LMPs). In the third level, the Direct Current Optimal Power Flow (DCOPF) is determined to update the LMPs by the Independent System Operator (ISO). The optimization problem is an Equilibrium Problem with Equilibrium Constraints (EPEC) since there are multiple financers across the TS. The proposed model is implemented on the IEEE standard 30 bus TS to present the effectiveness of the EHs' deployment and the impact of the correlations in the total costs of the TSO and financers.

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3