A threshold‐based sorting algorithm for dense wireless sensor systems and communication networks

Author:

Shirvani Moghaddam Shahriar1ORCID,Shirvani Moghaddam Kiaksar2ORCID

Affiliation:

1. Faculty of Electrical Engineering Shahid Rajaee Teacher Training University (SRTTU) Tehran Iran

2. School of Computer Engineering Iran University of Science and Technology (IUST) Tehran Iran

Abstract

AbstractNowadays, time‐varying and high‐density data of wireless sensor systems and communication networks compel us to propose and realise low‐complexity and time‐efficient algorithms for searching, clustering, and sorting. A novel threshold‐based sorting algorithm applicable to dense and ultra‐dense networks is proposed in this study. Instead of sorting whole data in a large data set and selecting a certain number of them, the proposed algorithm sorts a specific number of elements that are larger or smaller than a threshold level or located between two threshold values. First, based on the mean value and standard deviation of the data, a theoretical analysis to find the exact and approximate thresholds, respectively for known (Gaussian, uniform, Rayleigh, and negative exponential) and unknown probability distributions is presented. Then, an algorithm to sort a predefined number of data is realised. Finally, the effectiveness of the proposed algorithm is shown in the view of the time complexity order, the running time, and the similarity measure. To do this, theoretical and numerical analyses are used to show the superiority of the proposed algorithm in known and unknown distributions to the well‐known conventional and gradual conventional versions of Merge, Quick, and K‐S mean‐based sorting algorithms.

Publisher

Institution of Engineering and Technology (IET)

Subject

Industrial and Manufacturing Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An FPGA based Scheme for Real-Time Max/Min-Set-Selection Sorters;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3