Affiliation:
1. Department of Intelligent Transportation Automotive Engineering Research Institute of Jiangsu University Zhenjiang China
2. Department of Vehicle Engineering School of Automotive and Traffic Engineering of Jiangsu University Zhenjiang China
3. Department of Vehicle Engineering Zhenjiang City Jiangsu University Engineering Technology Research Institute Zhenjiang China
Abstract
AbstractControlling an autonomous vehicle's unprotected left turn at an intersection is a challenging task. Traditional rule‐based autonomous driving decision and control algorithms struggle to construct accurate and trustworthy mathematical models for such circumstances, owing to their considerable uncertainty and unpredictability. To overcome this problem, a rule‐constrained reinforcement learning (RCRL) control method is proposed in this work for autonomous driving. To train a reinforcement learning controller with rule constraints, outcomes of the path planning module are used as a goal condition in the reinforcement learning framework. Since they include vehicle dynamics, the proposed approach is safer and more reliable compared to end‐to‐end learning, thereby ensuring that the generated trajectories are locally optimal while adjusting to unpredictable situations. In the experiments, a highly randomized two‐way four‐lane intersection is established based on the CARLA simulator to verify the effectiveness of the proposed RCRL control method. Accordingly, the results show that the proposed method can provide real‐time safe planning and ensure high passing efficiency for autonomous vehicles in the unprotected left turn task.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Law,Mechanical Engineering,General Environmental Science,Transportation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献