Road damage detection with bounding box and generative adversarial networks based augmentation methods

Author:

Aghayan‐Mashhady Nima1,Amirkhani Abdollah1ORCID

Affiliation:

1. School of Automotive Engineering Iran University of Science and Technology Tehran Iran

Abstract

AbstractIn this paper, based on the data augmentation techniques of bounding box augmentation and the road damage generative adversarial network based augmentation, a robust road damage detection method has been presented. To this end, first, Iran road damage dataset has been collected by means of a dashboard‐installed mobile phone. After processing these images by the blind referenceless image spatial quality evaluator technique, the substandard and inferior data have been automatically eliminated. In the second step, based on the YOLOv5 with several different baseline models, an algorithm has been developed for detecting the road surface damages. In the third step, by using the traditional as well as the bounding box augmentation and road damage generative adversarial network based augmentation techniques, the precision and the robustness of road damage detector under different environmental and field conditions have been improved. Finally, through the ensemble of the best models, the final detector accuracy has been enhanced. The findings of this article indicate that by using the proposed approach, the values of mAP and F1‐score are improved by 13.79% and 7.58%, respectively. The dataset and parts of the code are available at: https://github.com/IranRoadDamageDataset/IRRDD.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3