Deep reinforcement learning and ant colony optimization supporting multi‐UGV path planning and task assignment in 3D environments

Author:

Jin Binghui1ORCID,Sun Yang1ORCID,Wu Wenjun1,Gao Qiang1,Si Pengbo1

Affiliation:

1. School of Information Science and Technology Beijing University of Technology Beijing P.R. China

Abstract

AbstractWith the development of artificial intelligence, the application of unmanned ground vehicles (UGV) in outdoor hazardous scenarios has received more attention. However, the terrains in these environments are often complex and undulating, which also pose higher challenges to the multi‐UGV path planning and task assignment (MUPPTA) optimization. To efficiently improve the multi‐UGV collaboration in 3D environments, a MUPPTA method is proposed based on double deep Q learning network (DDQN) and ant colony optimization (ACO) to jointly optimize the path planning and task assignment decisions of multiple UGVs. The authors first comprehensively consider the characteristics of the 3D environments, and model the MUPPTA problem as a combinatorial optimization problem. To tackle it, the original problem is decomposed into the multi‐UGV path planning sub‐problem and task assignment sub‐problem, and solve them separately. First, the path planning sub‐problem in the 3D environments is transformed into a Markov decision process (MDP) model, and a multi‐UGV path planning algorithm based on DDQN (MUPP‐DDQN) is proposed to obtain the optimal paths and actual path costs between tasks through extensive offline learning and training. Based on this, a multi‐UGV task assignment algorithm is further proposed based on ACO (MUTA‐ACO) to solve the task assignment sub‐problem and achieve the optimal task assignment solution. Simulation results show that the proposed method is more cost‐effective and time‐saving compared to other comparison algorithms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3