Uncertainty‐aware nuclear power turbine vibration fault diagnosis method integrating machine learning and heuristic algorithm

Author:

Zhong Ruirui12ORCID,Feng Yixiong12ORCID,Li Puyan2ORCID,Wu Xuanyu2ORCID,Guo Ao2,Zhang Ansi1,Li Chuanjiang1

Affiliation:

1. State Key Laboratory of Public Big Data Guizhou University Guiyang China

2. State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou China

Abstract

AbstractNuclear power turbine fault diagnosis is an important issue in the field of nuclear power safety. The numerous state parameters in the operation and maintenance of nuclear power turbines are collected, forming a complex high‐dimensional feature space. These high‐dimensional feature spaces contain redundant information, which increases the training cost and reduces the recognition accuracy and efficiency of the fault diagnosis model. To address the aforementioned challenges, a vibration fault diagnosis algorithm in nuclear power turbines is proposed. First, a long short‐term memory‐based denoising autoencoder (LDAE) is designed to enhance the capability of uncertainty awareness. Then, a feature extraction method integrating variational mode decomposition (VMD), L‐cliffs‐based effective mode selection, and sample entropy is devised to extract the latent features from the complex high‐dimensional feature space. Furthermore, using extreme gradient boosting (XGBoost) as the classifier, LDAE‐VMD‐XGBoost model is constructed for fault diagnosis of nuclear power turbines. Considering the impact of multiple hyperparameters of LDAE‐VMD‐XGBoost model on the performance, the pathfinder algorithm is used to optimise the model hyperparameter settings and improve the fault diagnosis accuracy. Experimental results demonstrate the performance of the proposed improved LDAE‐VMD‐XGBoost in accurate nuclear power turbine vibration fault diagnosis.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3