Modeling and optimization of networked evolutionary game based on incomplete information with switched topologies

Author:

Gui Yalin1ORCID,Gao Lixin1,Li Zhitao1

Affiliation:

1. Institute of Intelligent Systems and Decision Wenzhou University Wenzhou China

Abstract

AbstractIn the realm of evolutionary game theory, the majority of scenarios involve players with incomplete knowledge, specially regarding their opponents' actions and payoffs compounded by the ever‐shifting landscape of players' interactions. These dynamics present formidable challenges in both the analysis and optimization of game evolution. To address this, a novel model named the networked evolutionary game (NEG) is proposed based on incomplete information with switched topologies. This model captures situations where players possess limited insight into their opponents' benefits, yet make decisions based on their own payoffs while adapting to different networks and new players. To bridge the gap between incomplete and complete information games, R. Selten's transformation method is leveraged, a renowned approach that converts an incomplete information game into an interim agent game, thereby establishing the equivalence of pure Nash equilibria (NE) in both scenarios. Employing the semi‐tensor product (STP) of matrices, a powerful tool in logistic system, the evolution of the model is articulated through algebraic relationships. This enables to unravel the patterns of game evolution and identify the corresponding pure Nash equilibria. By introducing control players, strategically positioned within the game, optimized control is facilitated over the evolutionary trajectory, ultimately leading to convergence towards an optimal outcome. Finally, these concepts are illustrated with a practical example within the paper.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3