Distributed cooperative control of mechatronic system driving multiple electrohydraulic actuators with uncertain nonlinearity and communication delay

Author:

Zhang Jiyu12,Gao Wei1,Guo Qing34ORCID,Ren Xing5,Wang Chen3,Shi Yan6ORCID

Affiliation:

1. School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin China

2. Hangzhou RoboCT Technology Development Co., Ltd. Hangzhou China

3. School of Aeronautics and Astronautics University of Electronic Science and Technology of China Chengdu China

4. Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province Chengdu China

5. School of Automation Engineering University of Electronic Science and Technology of China Chengdu China

6. School of Automation Science and Electrical Engineering Beihang University (BUAA) Beijing China

Abstract

AbstractBeing different from many centralized mechatronic systems, the distributed transmission mechanism has the significant advantage such that realize cooperative task only based on small amount neighbour nodes with low computational complexity. In this study, a distributed cooperative control is proposed for multiple electrohydraulic system (MEHS) to guarantee the follower electrohydraulic node tracking the leader motion, based on the approach of directed spanning tree. Firstly, the MEHS model is constructed as three‐orders isomorphic nonlinear dynamics. Then, a disturbance observer is adopted to estimate uncertain nonlinearities caused by hydraulic parametric uncertainties and unknown external loads in the MEHS. To address unknown communication delays in the network topology of MEHS, a quasi‐synchronous controller is designed via Lyapunov–Krasovskii technique to guarantee that the synchronous errors asymptotically converge to a zero neighbourhood. Finally, the effectiveness of the proposed distributed synchronous control is verified by simulation results under uncertain nonlinearities and different communication delays.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3