A new transformer‐less common grounded five‐level grid‐tied inverter with leakage current elimination and voltage boosting capability for photovoltaic applications

Author:

Vosoughi Kurdkandi Naser1ORCID,Marangalu Milad Ghavipanjeh2ORCID,Alavi Peyman2,Gharehkoushan Amirreza Zarrin2,Rahimpour Saeed1,Islam Md Rabiul3ORCID,Muttaqi Kashem M.3

Affiliation:

1. Department of Electrical and Computer Engineering San Diego State University San Diego California USA

2. Faculty of Electrical and Computer Engineering University of Tabriz Tabriz Iran

3. School of Electrical Computer and Telecommunications Engineering Faculty of Engineering and Information Sciences University of Wollongong Wollongong New South Wales Australia

Abstract

AbstractDue to serious Concerns such as air pollution, global warming, and fossil fuels shortcoming, renewable energy sources such as photovoltaic applications are dramatically being integrated into the power generation systems all of the world. Here, a new switched‐capacitor‐based transformer‐less grid‐tied inverter has been proposed. By applying the series–parallel switching technique of the utilized switched‐capacitor module, the voltage boosting capability has been obtained. By implementing common ground technique, high overall efficiency and leakage current elimination capability have been obtained. Since the proposed inverter provides a multi‐level output voltage, the total harmonic distortion of the injected grid current is reduced. The introduced control strategy has been implemented to control both active and reactive powers and generate the switches pulses. Therefore, a high quality and adjusted current is injected to the grid. This inverter requires a single renewable energy source as input DC source. Here, the comprehensive description of the proposed inverter and its performance with design considerations have been presented. The proposed structure has been compared with several similar structures and the obtained results have been investigated. To evaluate the performance of the proposed inverter, a 620 W laboratory prototype is assembled and experimental results are analyzed.

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3