Optimal sizing of grid‐connected rooftop photovoltaic and battery energy storage for houses with electric vehicle

Author:

Merrington Sarah1,Khezri Rahmat2ORCID,Mahmoudi Amin1

Affiliation:

1. College of Science and Engineering Flinders University Adelaide South Australia Australia

2. Department of Electrical Engineering Chalmers University of Technology Gothenburg Sweden

Abstract

AbstractA practical optimal sizing model is developed for grid‐connected rooftop solar photovoltaic (PV) and battery energy storage (BES) of homes with electric vehicle (EV) to minimise the net present cost of electricity. Two system configurations, (1) PV‐EV and (2) PV‐BES‐EV, are investigated for optimal sizing of PV and BES by creating new rule‐based home energy management systems. The uncertainties of EV availability (arrival and departure times) and its initial state of charge, when arrives home, are incorporated using stochastic functions. The effect of popular EV models in the market is investigated on the optimal sizing and electricity cost of the customers. Several sensitivity analyses are adopted based on variations in the grid constrains, retail price and feed in tariff. Uncertainty analysis is provided based on the variations of insolation, temperature, and load to approve the optimal results of the developed model. A practical guideline is presented for residential customers in a typical grid‐connected household to select the optimal capacity of PV or PV‐BES system considering the model of EV. While the proposed optimization model is general and can be used for various case studies, real annual data of solar insolation, temperature, household's load, electricity prices, as well as PV and BES market data are used for an Australian case study. The developed optimal sizing model is also applied to residential households in different Australian States.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3