A novel scheme based on information theory and transfer learning for multi classes motor imagery decoding

Author:

Parchami Jaber1ORCID,Sarbishaei Ghazaleh1ORCID

Affiliation:

1. Department of Electrical Engineering Sadjad University of Technology Mashhad Iran

Abstract

AbstractThe most important challenges of classifying Motor Imagery tasks based on the EEG signal are low signal‐to‐noise ratio, non‐stationarity, and the high subject dependence of the EEG signal. In this study, a framework for multi‐class decoding of Motor Imagery signals is presented. This framework is based on information theory and hybrid deep learning along with transfer learning. In this study, the OVR‐FBDiv method, which is based on the symmetric Kullback—Leibler divergence, is used to differentiate between features of different classes and highlight them. Then, the mRMR algorithm is used to select the most distinctive features obtained from the filters of symmetric KL divergence. Finally, a hybrid deep neural network consisting of CNN and LSTM is used to learn the spatial and temporal features of the EEG signal along with the transfer learning technique to overcome the problem of subject dependence in EEG signals. The average value of Kappa for the classification of 4‐class Motor Imagery data on BCI competition IV dataset 2a by the proposed method is 0.84. Also, the proposed method is compared with other state‐of‐the‐art methods.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3