Morphology reconstruction of nickel cobalt layered double hydroxides induced by electrolyte concentrations triggers high performance of supercapattery storage

Author:

Lei Wentao1,Liu Shaobo2,Liu Qi1,Zou Xingjian3,Xia Hui1ORCID

Affiliation:

1. School of Physics Central South University Changsha China

2. Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science Changsha University of Science and Technology Changsha China

3. Department of Materials Science and Engineering Shenzhen MSU‐BIT University Shenzhen China

Abstract

AbstractNickel cobalt layered double hydroxides (NiCo LDHs) have emerged as ideal electrode materials for supercapattery due to their high specific surface area and excellent cycling stability. Morphology control plays a unique role in regulating the performance of the NiCo LDHs. Herein, the morphology of NiCo‐LDHs electrode is optimized for enhancing energy storage by a simple activation process with different concentrations of the electrolyte. During the activation process, electrochemical morphology reconstruction occurs on the electrode surface. With a 2 m KOH electrolyte, the NiCo‐LDH electrode transforms from nanosheets to nanoflower, which aids in reducing the distance of ion transport. The reconstructed NiCo‐LDH exhibits an ultra‐high specific capacity of 2809 C g−1 at a current density of 1 A g−1, outperforming most of NiCo LDHs. At a high current density of 10 A g−1, the capacity retention rate remains above 72.7% after 3000 cycles. An asymmetric supercapacitor is fabricated with activated carbon material as the negative electrode, the energy density is 36 Wh kg−1 at the power density of 732 W kg−1. The strategy proposed in the study, which involves concentration‐controlled morphology optimization for energy storage enhancement, holds great practical significance for the field of supercapatteries.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3