Short‐term load interval prediction with unilateral adaptive update strategy and simplified biased convex cost function

Author:

Zheng Shu12,Long Huan1ORCID,Wu Zhi1ORCID,Gu Wei1ORCID,Zhao Jingtao2,Geng Runhao1

Affiliation:

1. School of Electrical Engineering Southeast University Nanjing China

2. NARI Technology Co., Ltd. Nanjing China

Abstract

AbstractThis article proposes a unilateral Adaptive update strategy based Interval Prediction (AIP) model for short‐term load prediction, which is developed based on lower and upper bound estimation (LUBE) architecture. In traditional LUBE interval prediction model, the model training is usually trained by heuristic algorithms. In this article, the model training is formulated as a bi‐level optimization problem with the help of proposed unilateral adaptive update strategy and cost function. In lower‐level problem, a simplified biased convex cost function is developed to supervise the learning direction of basic prediction engines. The basic prediction engine utilizes Gated Recurrent Unit (GRU) to extract features and Full connected Neural Network (FNN) to generate interval boundary. In upper‐level problem, a unilateral adaptive update strategy with unilateral coverage rate is put forward. It iteratively tunes hyper‐parameters of cost function during training process. Comprehensive experiments based on residential load data are implemented and the proposed interval prediction model outperforms the tested state‐of‐the‐art algorithms, achieving a 15% reduction in prediction error and a 20% decrease in computational time.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3