Multi‐objective digital circuit block optimisation based on cell mapping in an industrial electronic design automation flow

Author:

Cao Linan1ORCID,Bale Simon J.1,Trefzer Martin A.1ORCID

Affiliation:

1. School of Physics, Engineering, and Technology University of York York UK

Abstract

AbstractModern electronic design automation (EDA) tools can handle the complexity of state‐of‐the‐art electronic systems by decomposing them into smaller blocks or cells, introducing different levels of abstraction and staged design flows. However, throughout each independently optimised design step, overheads and inefficiencies can accumulate in the resulting overall design. Performing design‐specific optimisation from a more global viewpoint requires more time due to the larger search space but has the potential to provide solutions with improved performanc. In this work, a fully‐automated, multi‐objective (MO) EDA flow is introduced to address this issue. It specifically tunes drive strength mapping, prior to physical implementation, through MO population‐based search algorithms. Designs are evaluated with respect to their power, performance and area (PPA). The proposed approach is aimed at digital circuit optimisation at the block level, where it is capable of expanding the design space and offers a set of trade‐off solutions for different case‐specific utilisation. We have applied the proposed multi‐objective electronic design automation flow (MOEDA) framework to ISCAS‐85 and EPFL benchmark circuits by using a commercial 65 nm standard cell library. The experimental results demonstrate how the MOEDA flow enhances the solutions initially generated by the standard digital flow and how simultaneously a significant improvement in PPA metrics is achieved.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3