Affiliation:
1. Key Laboratory of Engineering Dielectrics and Its Application Ministry of Education Harbin University of Science and Technology Harbin China
2. School of Measurement and Communication Engineering Harbin University of Science and Technology Harbin China
3. Electric Power Research Institute State Grid Heilongjiang Electric Power Company Limited Harbin China
Abstract
AbstractThe main part of oil‐immersed power equipment is oil‐paper insulation. At lower ambient temperatures, transformer oil will become viscous. As a result, compared to those at room temperature or operating temperature, the frequency domain dielectric properties of oil‐paper insulation at low temperatures are drastically different. For evaluating the insulation condition of electrical equipment, it is essential to accurately determine their dielectric properties. This paper described the FDS test, the DC conductivity test, and the transformer oil viscosity test, which was carried out in a laboratory environment for different ageing of oil‐immersed pressboard and transformer oil at 233–373 K. The effects of temperature on the dielectric properties at the competing mechanisms of polarisation and conductivity loss were clarified based on variations of the FDS curves. Considering the viscosity change of ageing transformer oil at low temperatures, the Arrhenius and VFT viscosity equations were used to achieve a fitting calculation in the different temperature zones. Based on the molecular/ion transition model in the force field and electric field, the characterisation relationships between the dynamic viscosity, DC conductivity, and test temperature of transformer oil were established. The limitations of conventional transformer oil equivalent dielectric relaxation models over a wide temperature range were finally clarified by combining the test findings of the DC conductivity over a wide temperature range with observed and simulated calculations. This paper provides an essential theoretical reference when using the FDS test to diagnose the insulation performance of oil‐immersed power equipment in extremely cold regions.
Funder
Heilongjiang Provincial Postdoctoral Science Foundation
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献