The bubble formation characteristics of oil‐paper insulation and its influence on insulation performance

Author:

Zhang Yiyi12ORCID,Du Qianlun1,Wei Wenchang1,Wang Wenqiang1,Wang Gang1,Liu Yansong1,Xie Qing3

Affiliation:

1. Guangxi Power Transmission and Distribution Network Lightning Protection Engineering Technology Research Center Guangxi University Nanning China

2. Electric Power Research Institute Guangxi Power Grid Co., Ltd. Nanning China

3. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding China

Abstract

AbstractEngineering experience shows that for transformers with long service life and serious moisture exposure, the inter‐turn paper insulation inside the winding will precipitate bubbles under the condition of electric field and conductor heating, which will endanger the equipment insulation. In order to explore the influence factors of bubbles formation in the moist insulating paper of transformers, based on the existing research on the influence of moisture content and gas dissolution in transformer oil, this study further considers the influence of air pressure (AP) and electric field and establishes an experimental platform to change the air pressure and electric field, thereby studying the formation characteristics of bubbles in oil‐paper insulation. The results show that air pressure and electric field can affect the initial temperature, volume, and shape of bubble formation. From 0 to −0.05 MPa for air pressure, the initial temperature of bubble generation decreased by 41°C, its maximum two‐dimensional projected area increased by 418.4% with more severe distortion, and the breakdown voltage decreased. When the AC voltage applied on the needle plate electrode increased from 0 to 10 kV, the initial temperature of bubble formation increased by 29°C, and the maximum two‐dimensional projection area increased by 336.6%.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3