Dynamic ageing research of cross‐linked polyethylene cable insulation based on temporal‐spatial dimension under combined electro‐thermal effect

Author:

Zhao Yifeng1ORCID,Xie Yue2ORCID,Zhao Yu3,Huang Jiasheng4,Fan Xinghui1,Nie Yangyang1,Liu Gang1ORCID

Affiliation:

1. School of Electric Power Engineering South China University of Technology Guangzhou China

2. School of Automation Guangdong Polytechnic Normal University Guangzhou China

3. State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment Shenzhen China

4. Transmission Management Office Guangzhou Power Supply Bureau Guangzhou China

Abstract

AbstractDynamic ageing process of cross‐linked polyethylene (XLPE) cable insulation under combined electro‐thermal effect is investigated by the construction of theoretical analysis model and the practice of operation‐simulated ageing test. Firstly, theoretical analysis model is constructed from time and spatial dimensions. From the time dimension, in the light of the impeding trend of internal stress to external stress, the XLPE ageing process of Steady state ‐Transition state ‐Steady state (STS) is proposed to illustrate the dynamic ageing process of XLPE. From the spatial dimension, the insulation is divided into three scales to quantify the ageing. Secondly, to practice the theoretical analysis model, an operation‐simulated ageing test was conducted on two high voltage alternating current cables with service years of 15 and 30 for 540 days. Subsequently, relevant diagnostic measurements were applied to analyse the influence of physicochemical characteristics on the dielectric and heat transfer performances of the cables. The results show that the degradation of the actual operating cable is an extremely slow process. On the one hand, the response in physical changes of morphology counterbalances the external stress, maintaining the stability. On the other hand, once the chemical changes occur, negative feedback mechanism tends to impede the occurrence of further degradation by regulating fields distribution.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3