Fueling the seaport of the future: Investments in low‐carbon energy technologies for operational resilience in seaport multi‐energy systems

Author:

Xie Chengzhi1ORCID,Dehghanian Payman1ORCID,Estebsari Abouzar2

Affiliation:

1. Department of Electrical and Computer Engineering George Washington University Washington District of Columbia USA

2. School of the Built Environment and Architecture London South Bank University London UK

Abstract

AbstractThe ability to withstand and recover from disruptions is essential for seaport energy systems, and in light of the growing push for decarbonization, incorporating clean energy sources has become increasingly imperative to ensure resilience. This paper proposes a resilience enhancement planning strategy for a seaport multi‐energy system that integrates various energy modalities and sources, including heating, cooling, hydrogen, solar, and wind power. The planning strategy aims to ensure the reliable operation of the system during contingency events, such as power outages, equipment failures, or extreme weather incidents. The proposed optimization model is designed as a mixed‐integer nonlinear programming formulation, in which McCormick inequalities and other linearization techniques are utilized to tackle the model nonlinearities. The model allocates fuel cell electric trucks (FCETs), renewable energy sources, hydrogen refueling stations, and remote control switches such that the system resilience is enhanced while incorporating natural‐gas‐powered combined cooling, heating, and power system to minimize the operation and unserved demand costs. The model considers various factors such as the availability of renewable energy sources, the demand for heating, cooling, electricity, and hydrogen, the operation of remote control switches to help system reconfiguration, the travel behaviour of FCETs, and the power output of FCETs via vehicle‐to‐grid interface. The numerical results demonstrate that the proposed strategy can significantly improve the resilience of the seaport multi‐energy system and reduce the risk of service disruptions during contingency scenarios.

Funder

National Science Foundation

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3