AESR3D: 3D overcomplete autoencoder for trabecular computed tomography super resolution

Author:

Zhang Shuwei1,Liang Yefeng23,Li Xingyu4,Li Shibo2ORCID,Xiong Xiaofeng5,Zhang Lihai1

Affiliation:

1. Department of Orthopaedics Chinese PLA General Hospital Beijing China

2. Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China

3. University of Chinese Academy of Sciences CAS Beijing China

4. College of Design and Engineering National University of Singapore Singapore Singapore

5. SDU Biorobotics The Mærsk Mc‐Kinney Møller Institute The University of Southern Denmark (SDU) Odense M Denmark

Abstract

AbstractOsteoporosis is a major cause of bone fracture and can be characterised by both mass loss and microstructure deterioration of the bone. The modern way of osteoporosis assessment is through the measurement of bone mineral density, which is not able to unveil the pathological condition from the mesoscale aspect. To obtain mesoscale information from computed tomography (CT), the super‐resolution (SR) approach for volumetric imaging data is required. A deep learning model AESR3D is proposed to recover high‐resolution (HR) Micro‐CT from low‐resolution Micro‐CT and implement an unsupervised segmentation for better trabecular observation and measurement. A new regularisation overcomplete autoencoder framework for the SR task is proposed and theoretically analysed. The best performance is achieved on structural similarity measure of trabecular CT SR task compared with the state‐of‐the‐art models in both natural and medical image SR tasks. The HR and SR images show a high correlation (r = 0.996, intraclass correlation coefficients = 0.917) on trabecular bone morphological indicators. The results also prove the effectiveness of our regularisation framework when training a large capacity model.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3