Affiliation:
1. School of Artificial Intelligence Chongqing University of Technology Chongqing China
2. Department of Game Design Faculty of Arts Uppsala University Uppsala Sweden
3. College of Computer Science and Technology Qingdao University Qingdao Shandong Province China
Abstract
AbstractAs one of the most widespread renewable energy sources, wind energy is now an important part of the power system. Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation. However, due to the stochastic and uncertain nature of wind energy, more accurate forecasting is necessary for its more stable and safer utilisation. This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction. It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks, which has rigorous mathematical theory support. It learns input‐output data pairs and shares weights within divided subintervals, which can greatly reduce computing costs. We explore the effectiveness of Legendre multi‐wavelets as an activation function. Meanwhile, it is successfully being applied to wind speed prediction. In addition, the application of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed. Numerical results on real data sets show that the proposed model is able to achieve optimal performance and high prediction accuracy. In particular, the model shows a more stable performance in multi‐step prediction, illustrating its superiority.
Publisher
Institution of Engineering and Technology (IET)
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献