Learning Deep Embedding with Acoustic and Phoneme Features for Speaker Recognition in FM Broadcasting

Author:

Li Xiao12ORCID,Chen Xiao1ORCID,Fu Rui23ORCID,Hu Xiao2ORCID,Chen Mintong1ORCID,Niu Kun1ORCID

Affiliation:

1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Academy of Broadcasting Science, National Radio and Television Administration, Beijing 100866, China

3. School of Information and Communication Engineering, Communication University of China, Beijing 100024, China

Abstract

Text-independent speaker verification (TI-SV) is a crucial task in speaker recognition, as it involves verifying an individual’s claimed identity from speech of arbitrary content without any human intervention. The target for TI-SV is to design a discriminative network to learn deep speaker embedding for speaker idiosyncrasy. In this paper, we propose a deep speaker embedding learning approach of a hybrid deep neural network (DNN) for TI-SV in FM broadcasting. Not only acoustic features are utilized, but also phoneme features are introduced as prior knowledge to collectively learn deep speaker embedding. The hybrid DNN consists of a convolutional neural network architecture for generating acoustic features and a multilayer perceptron architecture for extracting phoneme features sequentially, which represent significant pronunciation attributes. The extracted acoustic and phoneme features are concatenated to form deep embedding descriptors for speaker identity. The hybrid DNN demonstrates not only the complementarity between acoustic and phoneme features but also the temporality of phoneme features in a sequence. Our experiments show that the hybrid DNN outperforms existing methods and delivers a remarkable performance in FM broadcasting TI-SV.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3