ATI: Assemble topological interaction overcomes consistency–cohesion trade‐off in bird flocking

Author:

Huang Jialei1,Zhu Bo1,Hu Tianjiang12ORCID

Affiliation:

1. School of Aeronautics and Astronautics Sun Yat‐sen University Guangzhou China

2. School of Artificial Intelligence Sun Yat‐sen University Guangzhou China

Abstract

AbstractIn nature, various animal groups like bird flocks display proficient collective navigation achieved by maintaining high consistency and cohesion simultaneously. Both metric and topological interactions have been explored to ensure high consistency among groups. The topological interactions found in bird flocks are more cohesive than metric interactions against external perturbations, especially the spatially balanced topological interaction (SBTI). However, it is revealed that in complex environments, pursuing cohesion via existing interactions compromises consistency. The authors introduce an innovative solution, assemble topological interaction, to address this challenge. Contrasting with static interaction rules, the new interaction empowers individuals with self‐awareness to adapt to the complex environment by switching between interactions through visual cues. Most individuals employ high‐consistency k‐nearest topological interaction when not facing splitting threats. In the presence of such threats, some switch to the high‐cohesion SBTI to avert splitting. The assemble topological interaction thus transcends the limit of the trade‐off between consistency and cohesion. In addition, by comparing groups with varying degrees of these two features, the authors demonstrate that group effects are vital for efficient navigation led by a minority of informed agents. Finally, the real‐world drone‐swarm experiments validate the applicability of the proposed interaction to artificial robotic collectives.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3