Research progress in insulating and thermal conductivity of fluorinated graphene and its polyimide composites

Author:

Wang Xin1,Liu Shuyan1,Han Haoyu1,Liu Xiangyang1,Wang Xu1ORCID

Affiliation:

1. College of Polymer Science and Engineering State Key Laboratory of Polymer Material and Engineering Sichuan University Chengdu China

Abstract

AbstractThe demand for innovative thermal management materials with superior thermal conductivity and electrical insulating properties has significantly increased with the development of portable and flexible electronic gadgets. Fluorinated graphene (FG) has recently attracted the attention of the scientific community because of its exceptional thermal conductivity and electrical insulating qualities. This work aims to provide a detailed analysis of the structure‐property relationships inherent in FG, including both chemical and physical properties, and to explain the FG manufacturing process. Special attention should be paid to a thorough analysis of the thermodynamic conduction mechanism exhibited by FG, including the effects of corrugation size, fluorine coverage, and fluorine atom distribution on its thermal conductivity. The essay also examines in‐depth the most current and cutting‐edge developments addressing the utilisation of FG as a functional filler in composite‐modified polyimide (PI) materials. Furthermore, it has been noted as a crucial component in answering the needs for possible applications by maximising thermal conductivity and mechanical qualities in FG/PI composites through particular FG structural engineering and increased FG‐PI interaction. As a result, these elements serve as the main focus of ongoing research projects, highlighting important directions for development and investigation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

State Key Laboratory of Polymer Materials Engineering

Publisher

Institution of Engineering and Technology (IET)

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3