Robust state estimation for uncertain linear discrete systems with d‐step measurement delay and deterministic input signals

Author:

Tian Yu1,Meng Fanli1,Mao Yao2,Gao Junwei13,Liu Huabo13ORCID

Affiliation:

1. School of Automation Qingdao University Qingdao China

2. Institute of Optics and Electronics Chinese Academy of Sciences Chengdu China

3. Shandong Key Laboratory of Industrial Control Technology Qingdao China

Abstract

AbstractIn this study, the state estimation problems for linear discrete systems with uncertain parameters, deterministic input signals and d‐step measurement delay are investigated. A robust state estimator with a similar iterative form and comparable computational complexity to the Kalman filter is derived based on the state augmentation method and the sensitivity penalisation of the innovation process. It is discussed that the steady‐state properties such as boundedness and convergence of the robust state estimator under the assumptions that the system parameters are time invariant. Numerical simulation results show that compared with the Kalman filter, the obtained state estimator is more robust to modelling errors and has nice estimation accuracy.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction,Information Systems

Reference48 articles.

1. A New Approach to Linear Filtering and Prediction Problems

2. On parameter convergence in least squares identification and adaptive control

3. Block Kalman Filter: An Asymptotic Block Particle Filter in the Linear Gaussian Case

4. Application of robust Kalman filtering algorithm based on Markov distance in integrated navigation;Wang Y.G.;Beijing Surv. Mapp.,2020

5. Research on motion trajectory real‐time tracking based on video processing technology;Xiang W.H.;Mod. Electron. Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3