Reliable control of cyber‐physical systems under state attack: An adaptive integral sliding‐mode control approach

Author:

Li Jian12ORCID,Yang Defu1,Su Qingyu12ORCID,Shen Xueqiang12ORCID

Affiliation:

1. School of Automation Engineering Northeast Electric Power University Jilin Jilin China

2. Jilin Provincial Key Laboratory of Advanced Control Technology of Smart Energy Jilin Jilin China

Abstract

AbstractThis paper is concerned with optimal security problem of cyber‐physical systems with state attacks. Consider a linear physical system, assuming that the control input signal of the network layer is vulnerable to state attack. For a system that cannot measure all states, by combining output integral sliding mode, robust observer, and adaptive methods, an adaptive output integral sliding mode control method is proposed to maintain the safe operation of cyber physical systems under state attacks. Moreover, by optimizing the linear control gain matrix, the control strategy the authors designed can use the minimum cost to compensate the impact on the CPS system. Different from the existing results, (1) It is assumed that the system information of the attack signal is not fully known, we assume that the attacker can only measure a small amount of state information. (2) Not only the stability of ideal sliding mode is proved, but also the upper bound of the augmented state composed of system states and the error dynamic is given. (3) The sliding mode compensator can eliminate the impact of state attack, on the one hand, the damage caused by the state attack has been eliminated by using the upper bound of error, and on the other hand, the cost is reduced by optimizing the linear control gain. Finally, a power system with 3 generators and 6 buses is used to prove the effectiveness of the adaptive output integral sliding mode control scheme.

Funder

Education Department of Jilin Province

Natural Science Foundation of Jilin Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3