Command filtered backstepping control of constrained flexible joint robotic manipulator

Author:

Arefi Mohammad Mehdi1ORCID,Vafamand Navid1ORCID,Homayoun Behrouz1,Davoodi Mohammadreza2ORCID

Affiliation:

1. Department of Power and Control Engineering School of Electrical and Computer Engineering Shiraz University Shiraz Iran

2. Department of Electrical and Computer Engineering The University of Memphis Memphis Tennessee USA

Abstract

AbstractHere, an adaptive radial basis function (RBF) neural network (NN) backstepping controller is proposed for a class of input‐constrained flexible joint robotic manipulators represented by strict‐feedback form with unknown terms, external stochastic disturbance, and output disturbance. The proposed approach is robust against both deterministic and stochastic uncertainties and disturbances and copes with the control input amplitude saturation. Moreover, by deploying the minimal learning parameter method and command filter technique, the computational burden of derivative terms and adaptive terms greatly decreases. Considering the mean‐value theorem assists us to avoid the need for having the input saturation bounds in prior. The suggested tracking control scheme mandates the closed‐loop system states to be semi‐globally bounded‐in‐probability. Also, a quartic Barrier Lyapunov function is utilized to force the tracking error to be confined within a pre‐chosen small region around the origin. Eventually, a numerical simulation of a flexible joint robot manipulator with a single link is performed to show the effectiveness and performance of the developed control method.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3