Affiliation:
1. School of Engineering University of Glasgow Glasgow UK
2. School of Computing Edinburgh Napier University Edinburgh UK
Abstract
AbstractBuilding on previous radar‐based human activity recognition (HAR), we expand the micro‐Doppler signature to 6 domains and exploit each domain with a set of handcrafted features derived from the literature and our patents. An adaptive thresholding method to isolate the region of interest is employed, which is then applied in other domains. To reduce the computational burden and accelerate the convergence to an optimal solution for classification accuracy, a holistic approach to HAR optimisation is proposed using a surrogate model‐assisted differential evolutionary algorithm (SADEA‐I) to jointly optimise signal processing, adaptive thresholding and classification parameters for HAR. Two distinct classification models are evaluated with holistic optimisation: SADEA‐I with support vector machine classifiers (SVM) and SADEA‐I with AlexNet. They achieve an accuracy of 89.41% and 93.54%, respectively. This is an improvement of ∼11.3% for SVM and ∼2.7% for AlexNet when compared to the performance without SADEA‐I. The effectiveness of our holistic approach is validated using the University of Glasgow human radar signatures dataset. This proof of concept is significant for dimensionality reduction and computational efficiency when facing a multiplication of radar representation domains/feature spaces and transmitting/receiving channels that could be individually tuned in modern radar systems.
Funder
Engineering and Physical Sciences Research Council
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献