Machine learning‐based approach for maritime target classification and anomaly detection using millimetre wave radar Doppler signatures

Author:

Rahman Samiur1ORCID,Vattulainen Aleksanteri B.1ORCID,Robertson Duncan A.1ORCID

Affiliation:

1. School of Physics and Astronomy University of St Andrews St Andrews Scotland UK

Abstract

AbstractThe authors present multiple machine learning‐based methods for distinguishing maritime targets from sea clutter. The main goal for this classification framework is to aid future millimetre wave radar system design for marine autonomy. Availability of empirical data at this frequency range in the literature is scarce. The classification and anomaly detection techniques reported here use experimental data collected from three different field trials from three different millimetre wave radars. Two W‐band radars operating at 77 and 94 GHz and a G‐band radar operating at 207 GHz were used for the field trial data collection. The dataset encompasses eight classes including sea clutter returns. The other targets are boat, stand up paddleboard/kayak, swimmer, buoy, pallet, stationary solid object (i.e. rock) and sea lion. The Doppler signatures of the targets have been investigated to generate feature values. Five feature values have been extracted from Doppler spectra and four feature values from Doppler spectrograms. The features were trained on a supervised learning model for classification as well as an unsupervised model for anomaly detection. The supervised learning was performed for both multi‐class and 2‐class (sea clutter and target) classification. The classification based on spectrum features provided an 84.3% and 80.1% validation and test accuracy respectively for the multi‐class classification. For the spectrogram feature‐based learning, the validation and test accuracy for multi‐class increased to 93.3% and 88.7% respectively. For the 2‐class classification, the spectrum feature‐based training accuracies are 88.1% and 86.8%, whereas with the spectrogram feature‐based model, the values are 95% and 94.1% for validation and test accuracies respectively. A one class support vector machine was also applied to an unlabelled dataset for anomaly detection training, with 10% outlier data. The cross‐validation accuracy has shown very good agreement with the expected anomaly detection rate.

Funder

UK Research and Innovation

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3