Few‐shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images

Author:

Heslinga Friso G.1ORCID,Uysal Faruk1ORCID,van Rooij Sabina B.1ORCID,Berberich Sven1ORCID,Caro Cuenca Miguel1ORCID

Affiliation:

1. TNO ‐ Defence, Safety & Security the Hague the Netherlands

Abstract

AbstractSpace situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few‐shot domain adaptation technique, leveraging thousands of rapidly simulated low‐fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real‐case scenario, fine‐tuning a deep learning‐based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue‐to‐digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains.

Publisher

Institution of Engineering and Technology (IET)

Reference46 articles.

1. Command and control of a multinational space surveillance and tracking network;Console A.;Joint Air Power Competence Centre,2019

2. Development of the Haystack ultrawideband satellite imaging radar;Czerwinski M.G.;Linc. Lab. J.,2014

3. Deep learning

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combining simulated data, foundation models, and few real samples for training object detectors;Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II;2024-06-07

2. Automatic satellite characterization using simulated ISAR data;Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3