Hyperspectral image restoration using noise gradient and dual priors under mixed noise conditions

Author:

Aetesam Hazique1ORCID,Maji Suman Kumar2,Prasath V. B. Surya3ORCID

Affiliation:

1. Computer Science and Engineering Birla Institute of Technology Mesra Bihar India

2. Computer Science and Engineering Indian Institute of Technology Patna Bihar India

3. Department of Computer Science University of Cincinnati Cincinnati Ohio USA

Abstract

AbstractImages obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic spectrum. However, due to sensor limitations and imperfections during the image acquisition and transmission phases, noise is introduced into the acquired image, which can have a negative impact on downstream analyses such as classification, target tracking, and spectral unmixing. Noise in hyperspectral images (HSI) is modelled as a combination from several sources, including Gaussian/impulse noise, stripes, and deadlines. An HSI restoration method for such a mixed noise model is proposed. First, a joint optimisation framework is proposed for recovering hyperspectral data corrupted by mixed Gaussian‐impulse noise by estimating both the clean data as well as the sparse/impulse noise levels. Second, a hyper‐Laplacian prior is used along both the spatial and spectral dimensions to express sparsity in clean image gradients. Third, to model the sparse nature of impulse noise, an 1 − norm over the impulse noise gradient is used. Because the proposed methodology employs two distinct priors, the authors refer to it as the hyperspectral dual prior (HySpDualP) denoiser. To the best of authors' knowledge, this joint optimisation framework is the first attempt in this direction. To handle the non‐smooth and non‐convex nature of the general ℓp − norm‐based regularisation term, a generalised shrinkage/thresholding (GST) solver is employed. Finally, an efficient split‐Bregman approach is used to solve the resulting optimisation problem. Experimental results on synthetic data and real HSI datacube obtained from hyperspectral sensors demonstrate that the authors’ proposed model outperforms state‐of‐the‐art methods, both visually and in terms of various image quality assessment metrics.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3