Optimized hybrid YOLOu‐Quasi‐ProtoPNet for insulators classification

Author:

Stefenon Stefano Frizzo12ORCID,Singh Gurmail3,Souza Bruno José4,Freire Roberto Zanetti5,Yow Kin‐Choong6

Affiliation:

1. Digital Industry Center Fondazione Bruno Kessler Trento Italy

2. Department of Mathematics, Computer Science and Physics University of Udine Udine Italy

3. Department of Computer Sciences University of Wisconsin‐Madison Madison Wisconsin USA

4. Industrial and Systems Engineering Graduate Program (PPGEPS) Pontifical Catholic University of Parana (PUCPR) Curitiba Brazil

5. Universidade Tecnológica Federal do Paraná (UTFPR) Curitiba Brazil

6. Faculty of Engineering and Applied Science University of Regina Regina Saskatchewan Canada

Abstract

AbstractTo ensure the electrical power supply, inspections are frequently performed in the power grid. Nowadays, several inspections are conducted considering the use of aerial images since the grids might be in places that are difficult to access. The classification of the insulators' conditions recorded in inspections through computer vision is challenging, as object identification methods can have low performance because they are typically pre‐trained for a generalized task. Here, a hybrid method called YOLOu‐Quasi‐ProtoPNet is proposed for the detection and classification of failed insulators. This model is trained from scratch, using a personalized ultra‐large version of YOLOv5 for insulator detection and the optimized Quasi‐ProtoPNet model for classification. For the optimization of the Quasi‐ProtoPNet structure, the backbones VGG‐16, VGG‐19, ResNet‐34, ResNet‐152, DenseNet‐121, and DenseNet‐161 are evaluated. The F1‐score of 0.95165 was achieved using the proposed approach (based on DenseNet‐161) which outperforms models of the same class such as the Semi‐ProtoPNet, Ps‐ProtoPNet, Gen‐ProtoPNet, NP‐ProtoPNet, and the standard ProtoPNet for the classification task.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3