Degradation of superhydrophobic aluminium overhead line conductor surfaces

Author:

Zhang Xu12ORCID,Plaengpraphan Chorphaka3,Lian Chengxing4,Li Wenyuan3,Han Qinghua3ORCID,Rowland Simon M.3,Cotton Ian3,Li Qi35ORCID

Affiliation:

1. School of Engineering University of Warwick Coventry UK

2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an China

3. School of Engineering University of Manchester Manchester UK

4. School of Engineering Imperial College London London UK

5. Electrical Engineering School Chongqing University Chongqing China

Abstract

AbstractIt has been shown that noise emissions from HV overhead line conductors can be reduced under rain conditions by making their surfaces superhydrophobic. The working environment makes ensuring the longevity of any treatment a major challenge. The degradation of various superhydrophobic surfaces generated by applying a superhydrophobic coating and patterning microscale channels is assessed under an AC electric field (18 kV/cm) with continuous water spray. By examining the droplet distribution on the surfaces during the degradation and the surface roughness before and after degradation, the authors demonstrate that no water droplets were found on the microscale patterned surface, but droplets were formed on the coated surface after degradation. The surface roughness reduction of the coated surface and microscale patterned surface was 29.8% and 11.3%, respectively, indicating that the microscale patterned surface has better durability than the superhydrophobic coating under the AC electric stress.

Funder

Chinese Ministry of Science and Technology

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3