A novel multi‐slice electromagnetic field‐circuit coupling method for transient computation of long‐distance gas‐insulated transmission lines

Author:

Cheng Shucan1ORCID,Zhao Yanpu1,Xie Kejia2,Hu Bin2

Affiliation:

1. School of Electrical Engineering and Automation Wuhan University Wuhan China

2. Shandong Taikai High Voltage Switchgear Co., Ltd. Taian China

Abstract

AbstractAccurate calculation of short‐circuit electromagnetic force is crucial for both mechanical strength check and the optimal design of gas‐insulated transmission lines (GIL). Since the full 3D numerical simulation method is highly time‐consuming, a novel lightweight 2D multi‐slice electromagnetic field‐circuit coupled method for computing transient electromagnetic force is proposed, where appropriate port voltage degrees of freedom (DoFs) are introduced for the solid GIL conductor terminals. When the transient magnetic field equations are combined with the constraint equations of circuit part, including nodal voltage and loop current DoFs, a direct field‐circuit coupling scheme is thus derived. The proposed method can simultaneously consider the effect of interphase‐shunts and ground wires, as well as the skin effect and proximity effect. It can accurately capture the transient electromagnetic characteristics of GIL spanning from several to tens of kilometers under different short‐circuit conditions. The transient electromagnetic forces, as well as the induced voltages and currents of the enclosure, are analysed by the proposed method for both single‐phase and three‐phase enclosed GIL under various short‐circuit conditions. The proposed method has the advantages of high accuracy and lightweight computational cost, and thus it is also suitable for conducting important simulation tasks such as mechanical strength checks during the design optimisation phase of long‐distance GIL.

Funder

State Key Laboratory of Reliability and Intelligence of Electrical Equipment

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE IMPACT OF LIGHTNING STRIKE ON HYBRID HIGH VOLTAGE OVERHEAD TRANSMISSION LINE – INSULATED GAS LINE;Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska;2024-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3