RAPID OPTIMIZATION OF DISINFECTANTS BY PHOTOGRAPHIC IMAGE-BASED ANALYSIS AND DESIGN OF EXPERIMENTS

Author:

Salvador Carlos Jorge1ORCID,VALDEZ SALAS BENJAMIN1ORCID,BELTRAN PARTIDA ERNESTO ALONSO2ORCID,CURIEL ALVAREZ MARIO1ORCID,CHENG NELSON3ORCID,VALDEZ SALAS ERNESTO4ORCID

Affiliation:

1. Universidad Autónoma de Baja California (México)

2. Universidad autonoma de Baja California (México)

3. Magna International (Singapore)

4. Centro Médico Ixchel (México)

Abstract

The current pandemic of coronavirus disease 2019 (COVID-19) introduced the need for the development and optimization of new alcohol-water based disinfectant formulations. Moreover, the limited supply chain of traditional active ingredients such as ethanol (EtOH) has excessively increased the base formula cost, thus, novel platforms are needed to design new strategies for disinfectant development. In this work, we devise a novel quantification method of disinfectant turbidity and foam thickness based on photographic image analysis of disinfectant to optimize formula preparation, which improves critical physicochemical parameters related to colloidal stability. Next, the numerical data obtained from the pixel photograph's values were ordered by applying a 24 factorial design, considering each disinfectant ingredient, followed by an analysis of variance (ANOVA) and counter with contour and surface plots, respectively. Furthermore, our novel method was validated using a linear regression test, consequently outlining the method's error value. Our results suggest that the photographic image analysis supported by the statistical model correlated satisfactorily with the real physicochemical behavior of disinfectant, showing that the EtOH-H2O system plays a crucial role in turbidity and foam height control. In addition, we predicted by Minitab Optimizer Tool the physicochemical and aesthetic conditions of the disinfectant, having an error of 5%. Our current approach opens up a novel path to incorporate novel active ingredients for a rapid formulation and potentially scalable method to fabricate disinfectants. Keywords: image analysis, factorial design, disinfectant, foaming, active ingredients, optimization

Publisher

Publicaciones DYNA

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3