NEW NON-DESTRUCTIVE INSPECTION METHOD WITH GROUND PENETRATING RADAR TO EVALUATE THE SUITABILITY OF THE BACKFILLING GROUTING INJECTION IN TUNNEL BORING MACHINES

Author:

MONDRAGON ENGUIDANOS CATALINA1ORCID,VERDU VAZQUEZ AMPARO2ORCID,GIL LOPEZ TOMAS2ORCID,HERNANDEZ ALVAREZ JOSE1,GOMEZ HOYOS JORGE1,MENDEZ LANZA LUIS1

Affiliation:

1. Acciona (España)

2. Universidad Politécnica de Madrid (España)

Abstract

This research focuses on the development of a new non-destructive inspection method, based on the interpretation of electromagnetic waves by means of a ground penetration radar (GPR) to evaluate the condition of the backfilling two-component mortar grouting behind the segmental lining in tunnels made by tunnel boring machines (TBM). The data processing by digital models and the analysis of the propagation speed of the along the backfilling grouting layer have enabled the technical and operational feasibility of this novel inspection method. Once the conceptual framework of the research was defined, it was possible to validate the developed method in a full-scale operational environment in the Metro of Quito Line 1 (Ecuador). This validation involved a battery of tests collating the results obtained through the core-drilling extractions in comparison with the ones obtained with GPR. As a result of these calibration tests, it was possible to identify a range of propagation speeds linked to grouting in optimal execution conditions, as well as other ranges associated with potential anomalies. Finally, it was possible to implement this new inspection methodology on a regular basis in the Metro of Quito, where the conventional quality control by core-drillings was replaced almost entirely for the new method with GPR. Keywords: tunnel boring machine (TBM); breaching; mortar; ground penetrating radar; electromagnetic.

Publisher

Publicaciones DYNA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3