Artificial neural network approach for acute poisoning mortality prediction in emergency departments

Author:

Park Seon Yeong,Kim Kisung,Woo Seon Hee,Park Jung Taek,Jeong Sikyoung,Kim Jinwoo,Hong SungyoupORCID

Abstract

Objective The number of deaths due to acute poisoning (AP) is on the increase. It is crucial to predict AP patient mortality to identify those requiring intensive care for providing appropriate patient care as well as preserving medical resources. The aim of this study is to predict the risk of in-hospital mortality associated with AP using an artificial neural network (ANN) model.Methods In this multicenter retrospective study, ANN and logistic regression models were constructed using the clinical and laboratory data of 1,304 patients seeking emergency treatment for AP. The ANN model was first trained on 912/1,304 (70%) randomly selected patients and then tested on the remaining 392/1,304 (30%). Receiver operating characteristic curve analysis was used to evaluate the mortality prediction of the two models.Results Age, endotracheal intubation status, and intensive care unit admission were significant predictors of mortality in patients with AP in the multivariate logistic regression model. The ANN model indicated age, Glasgow Coma Scale, intensive care unit admission, and endotracheal intubation status were critical factors among the 12 independent variables related to in-hospital mortality. The area under the receiver operating characteristic curve for mortality prediction was significantly higher in the ANN model compared to the logistic regression model.Conclusion This study establishes that the ANN model could be a valuable tool for predicting the risk of death following AP. Thus, it may facilitate effective patient triage and improve the outcomes.

Funder

Catholic University of Korea Daejeon St. Mary’s Hospital

Publisher

The Korean Society of Emergency Medicine

Subject

Emergency Nursing,Emergency Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3