Almanac — Retrieval-Augmented Language Models for Clinical Medicine

Author:

Zakka Cyril1ORCID,Shad Rohan2ORCID,Chaurasia Akash3ORCID,Dalal Alex R.1ORCID,Kim Jennifer L.1ORCID,Moor Michael3ORCID,Fong Robyn1ORCID,Phillips Curran1ORCID,Alexander Kevin4ORCID,Ashley Euan4ORCID,Boyd Jack1ORCID,Boyd Kathleen5ORCID,Hirsch Karen6ORCID,Langlotz Curt7ORCID,Lee Rita1ORCID,Melia Joanna8ORCID,Nelson Joanna9ORCID,Sallam Karim4ORCID,Tullis Stacey1ORCID,Vogelsong Melissa Ann10ORCID,Cunningham John Patrick11ORCID,Hiesinger William1ORCID

Affiliation:

1. Department of Cardiothoracic Surgery, Stanford Medicine, Stanford, CA

2. Division of Cardiovascular Surgery, Penn Medicine, Philadelphia

3. Department of Computer Science, Stanford University, Stanford, CA

4. Division of Cardiovascular Medicine, Stanford Medicine, Stanford, CA

5. Department of Pediatrics, Stanford Medicine, Stanford, CA

6. Department of Neurology, Stanford Medicine, Stanford, CA

7. Department of Radiology and Biomedical Informatics, Stanford Medicine, Stanford, CA

8. Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore

9. Division of Infectious Diseases, Stanford Medicine, Stanford, CA

10. Division of Anesthesia, Stanford Medicine, Stanford, CA

11. Department of Statistics, Columbia University, New York

Publisher

Massachusetts Medical Society

Reference59 articles.

1. Brown TB Mann B Ryder N et al. Language models are few-shot learners. July 22 2020 (https://arxiv.org/abs/2005.14165). Preprint.

2. Chen M Tworek J Jun H et al. Evaluating large language models trained on code. July 14 2021 (https://arxiv.org/abs/2107.03374). Preprint.

3. Wei C Xie SM Ma T. Why do pretrained language models help in downstream tasks? An analysis of head and prompt tuning. June 2021 (https://arxiv.org/abs/2106.09226). Preprint.

4. Devlin J Chang M-W Lee K Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. October 2018 (https://arxiv.org/abs/1810.04805). Preprint.

5. Wei J Tay Y Bommasani R et al. Emergent abilities of large language models. June 2022 (https://arxiv.org/abs/2206.07682). Preprint.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3