Curcuma aromatica rhizomes ethanol extract: A potential therapeutic agent against HepG2 Hepatoma cells

Author:

Bui Dinh ThachORCID,Doan Chinh ChungORCID,Tran Thi Linh-GiangORCID,Trinh Thi-BenORCID,Le Thi DungORCID,Le Thi Kim-KhanhORCID,Vu Quang-DaoORCID,Le Nguyen Tu-LinhORCID,Ho Thien-HoangORCID

Abstract

Curcuma aromatica, a Vietnamese medicinal plant, exhibits diverse therapeutic applications including blood loss, blood stasis, bloody urination, bloody vomiting, irregular menstruation, epilepsy, and cancer treatment. C. aromatica rhizomes ethanol extract and curcumol content have been shown strong inhibition of cancer growth. HepG2 cells were exposed to different doses of ethanol extract and curcumol extract. The degree of cell growth inhibition was determined using the WST-1 assay, and Hoechst 33258 spectrofluorometric assay, while the rate of cell death by apoptosis was assessed using the annexin-propidium iodide double-staining assay. Flow cytometry was employed to study the cell cycle, while the transwell assay was used to assess cell migration and invasion. The expression of bax and bcl-2 genes was analyzed using real-time reverse transcription-PCR. C. aromatica rhizomes ethanol extract (CE) consisted of a total phenolic content value of 15.02±0.18 (mg/g extract) and a curcumol level of 849.8 ± 23.73 (?g/g extract). The growth of HepG2 cells was suppressed in a dose-dependent manner by C. aromatica rhizomes ethanol extract. Following a 72-hour exposure to an (CE) concentration of 100 ?g/mL, the inhibition rate was measured to be 34.559 ± 0.456 %, the IC50 value was determined to be 44.79 ?g/mL and the inhibition of curcumol was 50.961± 0.641 %, and the IC50=93.48. The application of CE induced late apoptosis in HepG2 cells. The CE also induced programmed cell death (apoptosis) in HepG2 cancer cells, effectively suppressing their growth, movement, and invasion by controlling the synthesis of Bcl-2 mRNA. This work gives novel insights into the antihepatoma action of (CE) and establishes a foundation for the development of preliminary anticancer medications.

Publisher

Horizon E-Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3