Direct shoot regeneration from male immature flower buds of Musa paradisiaca Linn. cv. Poovan (AAB)

Author:

Nair Anjana R G,Ravichandran P,Bejoy Mathew

Abstract

A tissue culture system has been developed to multiply Musa paradisiaca cv. Poovan using male immature flower bud and to establish it in ex vitro condition. Size of explants has been found an influencing factor for culture initiation. Immature male flower bud segments of 3 cm size were ideal for better survival and subsequent shoot regeneration. Direct shoot regeneration was achieved from male immature flower buds on Murashige and Skoog (MS) medium supplemented with varying concentrations of plant growth regulators. Initially, actively dividing meristematic region developed at the basal region of flower buds near the bract axil, which later grew into green shoot buds in most of the PGR treatments. Single use of benzyl adenine were found beneficial than kinetin or addition of indole-3-acetic acid. Maximum production of 31.0 ± 0.65 shoots was achieved on MS + 3% sucrose + 6 mg/L benzyl adenine in 15 weeks. Isolated healthy shoots were rooted in half-strength MS medium with 150 mg/L activated charcoal + 30 g/L sucrose + 1 mg/L indole-3-butyric acid within 15 days and they established successfully in greenhouse conditions with 85 % survival.

Publisher

Horizon E-Publishing Group

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of river and soil water quality at gold ore processing sites;PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity;2023

2. Development of direct regeneration protocol for mass multiplication of Musa spp. variety Udhayam (Pisang Awak, ABB) using different explants;Scientia Horticulturae;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3