Current concepts in osteogenesis imperfecta: bone structure, biomechanics and medical management

Author:

Nijhuis W. H.1,Eastwood D. M.2,Allgrove J.3,Hvid I.4,Weinans H. H.5,Bank R. A.6,Sakkers R. J.1

Affiliation:

1. Department of Orthopaedic Surgery, University Medical Centre Utrecht, Wilhelmina Children’s Hospital, The Netherlands

2. Department of Orthopaedic Surgery, Great Ormond Street Hospital, London, United Kingdom

3. Department of Endocrinology, Great Ormond Street Hospital, London, United Kingdom

4. Department of Orthopaedic Surgery, Oslo University Hospital, Norway

5. Department of Orthopaedic Surgery, University Medical Centre Utrecht, Wilhelmina Children’s Hospital, The Netherlands and ­Technical University, Delft, The Netherlands

6. Department of Pathology and Medical Biology, University Medical Centre Groningen, The Netherlands

Abstract

The majority of patients with osteogenesis imperfecta (OI) have mutations in the COL1A1 or COL1A2 gene, which has consequences for the composition of the bone matrix and bone architecture. The mutations result in overmodified collagen molecules, thinner collagen fibres and hypermineralization of bone tissue at a bone matrix level. Trabecular bone in OI is characterized by a lower trabecular number and connectivity as well as a lower trabecular thickness and volumetric bone mass. Cortical bone shows a decreased cortical thickness with less mechanical anisotropy and an increased pore percentage as a result of increased osteocyte lacunae and vascular porosity. Most OI patients have mutations at different locations in the COL1 gene. Disease severity in OI is probably partly determined by the nature of the primary collagen defect and its location with respect to the C-terminus of the collagen protein. The overall bone biomechanics result in a relatively weak and brittle structure. Since this is a result of all of the above-­mentioned factors as well as their interactions, there is ­considerable variation between patients, and accurate prediction on bone strength in the individual patient with OI is difficult. Current treatment of OI focuses on adequate vitamin-D levels and interventions in the bone turnover cycle with bisphosphonates. Bisphosphonates increase bone mineral density, but the evidence on improvement of clinical status remains limited. Effects of newer drugs such as antibodies against RANKL and sclerostin are currently under investigation. This paper was written under the guidance of the Study Group Genetics and Metabolic Diseases of the European Paediatric Orthopaedic Society.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Pediatrics, Perinatology and Child Health

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3