Stripping torques in human bone can be reliably predicted prior to screw insertion with optimum tightness being found between 70% and 80% of the maximum

Author:

Fletcher James W. A.12ORCID,Zderic Ivan2,Gueorguiev Boyko2,Richards R. Geoff2ORCID,Gill Harinderjit S.3,Whitehouse Michael R.45,Preatoni Ezio1

Affiliation:

1. Department for Health, University of Bath, Bath, UK

2. AO Research Institute Davos, Davos, Switzerland

3. Department of Mechanical Engineering, University of Bath, Bath, UK

4. Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, Bristol, UK

5. National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK

Abstract

Aims To devise a method to quantify and optimize tightness when inserting cortical screws, based on bone characterization and screw geometry. Methods Cortical human cadaveric diaphyseal tibiae screw holes (n = 20) underwent destructive testing to firstly establish the relationship between cortical thickness and experimental stripping torque (Tstr), and secondly to calibrate an equation to predict Tstr. Using the equation’s predictions, 3.5 mm screws were inserted (n = 66) to targeted torques representing 40% to 100% of Tstr, with recording of compression generated during tightening. Once the target torque had been achieved, immediate pullout testing was performed. Results Cortical thickness predicted Tstr (R2 = 0.862; p < 0.001) as did an equation based on tensile yield stress, bone-screw friction coefficient, and screw geometries (R2 = 0.894; p < 0.001). Compression increased with screw tightness up to 80% of the maximum (R2 = 0.495; p < 0.001). Beyond 80%, further tightening generated no increase in compression. Pullout force did not change with variations in submaximal tightness beyond 40% of Tstr (R2 = 0.014; p = 0.175). Conclusion Screw tightening between 70% and 80% of the predicted maximum generated optimum compression and pullout forces. Further tightening did not considerably increase compression, made no difference to pullout, and increased the risk of the screw holes being stripped. While further work is needed for development of intraoperative methods for accurate and reliable prediction of the maximum tightness for a screw, this work justifies insertion torque being considerably below the maximum. Cite this article: Bone Joint Res 2020;9(8):493–500.

Publisher

British Editorial Society of Bone & Joint Surgery

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3