Syndepositional tectonics and mass-transport deposits control channelized, bathymetrically complex deep-water systems (Aínsa depocenter, Spain)

Author:

Tek Daniel E.1,Poyatos-Moré Miquel2,Patacci Marco1,McArthur Adam D.1,Colombera Luca1,Cullen Timothy M.1,McCaffrey William D.1

Affiliation:

1. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.

2. Department of Geosciences, University of Oslo, Oslo 0371, Norway

Abstract

ABSTRACT The inception and evolution of channels in deep-water systems is controlled by the axial gradient and lateral confinement experienced by their formative flows. These parameters are often shaped by the action of tectonic structures and/or the emplacement of mass-transport deposits (MTDs). The Arro turbidite system (Aínsa depocenter, Spanish Pyrenees) is an ancient example of a deep-water channelized system from a bathymetrically complex basin, deposited in an active tectonic setting. Sedimentologic fieldwork and geologic mapping of the Arro system has been undertaken to provide context for a detailed study of three of the best-exposed outcrops: Sierra de Soto Gully, Barranco de la Caxigosa, and Muro de Bellos. These locations exemplify the role of confinement in controlling the facies and architecture in the system. Sedimentologic characterization of the deposits has allowed the identification of fifteen facies and eight facies associations; these form a continuum and are non-unique to any depositional environment. However, architectural characterization allowed the grouping of facies associations into four depositional elements: i) weakly confined, increasing-to-decreasing energy deposits; ii) progradational, weakly confined to overbank deposits; iii) alternations of MTDs and turbidites; iv) channel fills. Different styles of channel architecture are observed. In Barranco de la Caxigosa, a master surface which was cut and subsequently filled hosts three channel stories with erosional bases; channelization was enhanced by quasi-instantaneous imposition of lateral confinement by the emplacement of MTDs. In Muro de Bellos, the inception of partially levee-confined channel stories was enhanced by progressive narrowing of the depositional fairway by tectonic structures, which also controlled their migration. Results of this study suggest that deep-water channelization in active tectonic settings may be enhanced or hindered due to: 1) flow interaction with MTD-margin topography or; 2) MTD-top topography; 3) differential compaction of MTDs and/or sediment being loaded into MTDs; 4) formation of megascours by erosive MTDs; 5) basin-floor topography being reset by MTDs. Therefore, the Arro system can be used as an analog for ancient subsurface or outcrop of channelized deposits in bathymetrically complex basins, or as an ancient record of deposits left by flow types observed in modern confined systems.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3