Submarine-fan development revealed by integrated high-resolution datasets from La Jolla Fan, offshore California, U.S.A.

Author:

Maier Katherine L.1,Paull Charles K.1,Caress David W.1,Anderson Krystle1,Nieminski Nora M.2,Lundsten Eve1,Erwin Benjamin E.1,Gwiazda Roberto1,Fildani Andrea3

Affiliation:

1. Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California 95039, U.S.A.

2. Department of Geological Sciences, Stanford University, Stanford, California 94305, U.S.A.

3. The Deep Time Institute, P.O. Box 27552, Austin, Texas 78755-7552, U.S.A.

Abstract

ABSTRACT New high-resolution datasets across La Jolla submarine fan, offshore California, illuminate low-relief, down-dip widening conduits emanating from a deep-sea channel that deposited a combination of laterally extensive sand strata seemingly crisscrossed by distributary patterns. Extensive coverage of this sector of the seafloor shows submarine-fan architecture and morphologies essentially different than distributary channelized patterns characteristic of subaerial systems and previous conceptual models of submarine fans. The main La Jolla channel, connected to La Jolla Canyon, loses confinement by widening, decreasing in relief, and developing scoured margins across kilometers-long down-slope and lateral distances. Two scales of distributary patterns are associated with sand-rich deposits down-system from, and outside of, fully formed channels. A larger-scale distributary pattern is identified in backscatter and bathymetry from trains of preferential erosion associated with laterally continuous repetitive steps that extend for kilometers outside channel confinement and may represent net erosional upper-flow-regime transitional bedforms. Smaller-scale distributary backscatter patterns in unconfined sand-rich deposits originate from the wide, low-relief channel. We suggest that the newly imaged La Jolla seascape displays sedimentary features that may be common on deep-sea fans but missed in previous lower resolution studies of submarine fans. Thus, La Jolla provides the basis for integrating previously enigmatic and (or) incomplete images of submarine fans. High-resolution seafloor, subsurface, and sample datasets highlight the importance of channel widening, headward erosion, and unconfined flows in La Jolla submarine-fan development, and may be relevant to other sandy submarine fan systems.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3