The origin and significance of convolute lamination and pseudonodules in an ancient deep-marine turbidite system: From deposition to diagenesis

Author:

Al-Mufti Omar N.1,Arnott R. William C.1

Affiliation:

1. Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada

Abstract

ABSTRACT Soft-sediment deformation structures, like convolute lamination and pseudonodules, are common in deep-marine turbidites, but details of their origin and timing of formation remain a source of debate. Deep-marine basin-floor deposits of the Neoproterozoic Upper Kaza Group (Windermere Supergroup) crop out superbly in the Castle Creek study area and provide an ideal laboratory to investigate these aspects in convolute-laminated pseudonodules, and also how that deformation influenced later diagenesis. Pseudonodules consist of well-sorted, matrix-poor, upper medium- to coarse-grained, planar-stratified or cross-stratified sandstone that are underlain and overlain by comparatively more poorly sorted, matrix-rich, graded sandstone of similar grain size. Deposition of the stratified pseudonodules is interpreted to have occurred during the same event that deposited the graded sandstone, albeit during a period of general transport bypass, whereby isolated, shallow, seafloor depressions became filled with well-sorted, stratified sand. As stratified sand accumulated the depressions slowly subsided until a critical thickness had built up and exceeded the load-bearing capacity of the substrate composed of graded sand. This destabilized the surface separating the two layers and resulted in the stratified unit foundering, and in some cases becoming completely enveloped by, the upward-displaced lower-density substrate. Surprisingly, despite the deformed macroscopic character of the stratified sediment, primary grain fabric, including intergranular porosity up to 40%, was preserved and influenced early diagenesis, which, owing to dispersed phosphate cement and depleted carbon isotope composition of the pervasive carbonate cement, would have begun very near the sediment–water interface. Importantly also, pseudonodules are common in basin-floor deposits but comparatively rare in continental-slope strata. Expanding flow conditions over the basin floor would have promoted grain settling, and in turn development of a more stably (density) stratified flow structure. Ultimately this resulted in higher local rates of sedimentation on the basin floor and the accumulation of a substrate more prone to later liquidization.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3